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Abstract

Systems that act within an environment (e.g., robots, game
agents) often have at least two layers of planning: a descrip-
tive task-planning layer that describes what to do and an op-
erational acting layer that states how to accomplish a task or
action. Because they provide platform-specific details, opera-
tional models present a rich source for constructing task plan-
ning models. While LLMs have been used for generating task
models from natural language, less work has examined how
to incorporate operational models. We develop a pipeline that
produces PDDL task models by combining natural language
and operational JavaScript models for a Minecraft agent. We
evaluate the pipeline’s ability to produce correct actions under
varying conditions. Our results show that the pipeline some-
times generates valid actions, although their correctness fluc-
tuates depending on the input and parameters. We provide six
points for consideration of future work in this area.

1 Introduction
Planning with an LLM is often infeasible due to the ten-
dency of LLMs to hallucinate, and their general inability to
engage in logical thought (Pallagani et al. 2024). The field
of Automated Planning already provides many planning al-
gorithms capable of generating logically-sound plans for do-
mains with a variety of characteristics. Unlike LLMs, auto-
mated planners require formal planning-domain models to
generate correct plans. These models are a major engineer-
ing effort, which is usually undertaken by an expert in the
target domain. As such, the automation of domain-model au-
thoring is a common area of research.

Robotics systems can utilize plans generated by auto-
mated planners to accomplish their goals, but this requires
that the programmer provide not just the implementation for
the low-level actions, but also the planning model. To reduce
the human-effort cost of setting up such a system, we seek
to create planning models based on pre-existing operational
models for implemented robotic controllers.

Previous work has investigated the possibility of con-
structing formal planning domain definitions from natu-
ral language domain descriptions via LLMs (Oswald et al.
2024; Oates et al. 2024). Our work extend this research to
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the construction of planning models from operational mod-
els (i.e., low-level agent controller code). Specifically, we
use a LLM to translate the controller code in the context of
provided natural language information about the domain and
extrapolate its preconditions and effects into a PDDL action.

We construct a two-stage pipeline for generating actions
in PDDL, pictured in Figure 1. It takes as input (1) con-
troller functions corresponding to some action the bot can
undertake, (2) a partial domain model comprising a set of al-
lowed predicates and object types, and (3) natural-language
domain information pertinent to the action. It outputs PDDL
action definitions for each provided controller function. The
first stage of the pipeline processes and summarizes con-
troller functions and the second uses these summaries to
select the appropriate set of types and predicates from the
allowed set and then constructs an action using them.

We present a case-study on the functions implemented
for the Minecraft bot used in Voyager (Wang et al. 2023).
Specifically, we test our pipeline’s ability to generate valid
PDDL actions for crafting a craft table, planks, sticks and
a wooden sword. To see the effect of different temperature
settings on the actions that are made, we modulate this hy-
perparameter over four experimental runs. We show that our
pipeline is capable of producing valid actions and that lower
temperature settings predominantly result in the LLM gen-
erating correct actions for crafting most Minecraft objects.

2 Related Work
Work on automated action-model creation has mainly fo-
cused on extracting models (1) from plan traces, (2) from
natural language using more traditional NLP techniques–
both instructional and non-instructional text, or (3) from nat-
ural language with LLMs.

Automated action-model creation has long been ac-
complished by analyzing plan traces to extract action
definitions, as with the many works consolidated under
MACQ (Callanan et al. 2022). Our approach takes natural
language inputs instead of plan traces in formal language
and is significantly different than those for learning from
plan traces, so we will not make an in-depth discussion here.

Other works have extracted action models from natural-
language domain knowledge and natural-language instruc-
tions using traditional NLP techniques. The PrePost sys-
tem (Sil and Yates 2011) constructs STRIPS actions using



Figure 1: A visualization of the full pipeline process. The process starts at the starred box, and each subsequent intermediate
output has a number showing the order in which it is generated. Orange boxes show user-provided inputs and green boxes show
LLM outputs. Grey triangles represent prompts into which these components may be fed, and which are then fed into an LLM
represented by blue ovals.

a combination of NLP and statistical analysis on webtext. It
identifies actions as verbs in gerund-form, and then extracts
the preconditions and effects using an SVM trained on a
small labeled set of training data to detect if candidate words
in a text are likely related to an action word based on prox-
imity. Ge et al. (2012) create an incremental learner for ex-
tracting action preconditions, effects, and temporal relations
from webtext using NLP, bootstrapping, and knowledge rea-
soning. Yordanova and Kirste (2016) process instructional
text to create PDDL actions. Their technique transforms in-
struction sequences into timeseries which can be analyzed
statistically to identify causal relations between actions and
between partial states and actions. They infer preconditions
and effects from the causal relations. Huo et al. (2020) used
BERT, word2vec, and BiLSTM-CRF to construct PDDL
models based on natural language text. They leverage exten-
sive user interaction for refining the model including: classi-
fying objects, removing duplicates, optionally correcting ac-
tion preconditions and effects. Framer (Lindsay et al. 2017)
analyzes plans comprising simple natural language impera-
tive sentences to generate action templates and merges simi-
lar templates, and transforms the natural language plans into
PDDL-based plans. It provides these to a traditional plan-
trace-based operator learner to extract the PDDL model.
Jin et al. (2022) use LLMs to extract plan traces from text
and then use constraint-based techniques on the extracted

plan traces to construct action models.

Several works have leveraged LLMs to construct PDDL-
based action models. Oswald et al. (2024) look at creat-
ing PDDL actions based on natural-language descriptions
and context examples, while restricting the LLM to using
only a provided set of PDDL predicates and types. The sec-
ond stage of our pipeline is similar to this, although we are
not using context examples. Oates et al. (2024) use LLMs
with in-context learning to generate PDDL actions from
CVEs, natural-language technical descriptions of cyberse-
curity vulnerabilities. They including a human-in-the-loop
to inspect the generated operators, refine the prompt, and
provide further in-context examples to the LLM when nec-
essary. Smirnov et al. (2024) use LLMs to generate a do-
main and problem definition in one pass, unlike the previous
works which prompt on an action-by-action basis. They use
external checking and goal-reachability analysis to identify
errors in the domain and problem definitions and an error-
correction loop to prompt the LLM to correct the errors.
Ding et al. (2023) use LLMs to augment classical planning
knowledge with common sense knowledge from the LLM to
refine and improve user-provided PDDL action models. Liu
et al. (2023) create a planning system which converts natu-
ral language domain and problem descriptions into PDDL,
constructs a plan using a classical planner, and then coverts
the solution back into natural language. Guan et al. (2024)



use LLMs to generate actions, suggest new predicates, and
revise previously generated actions to use new predicates.
They use both validation tools and human-in-the-loop to
prompt LLMs for refinements of the generated models. The
CaStL framework (Guo et al., 2024) uses LLMs to gener-
ate a PDDL problem description from a PDDL domain de-
scription, a scene graph describing the environment, and a
natural-language goal description. To the best of our knowl-
edge no existing works use action implementations as their
initial input to generate PDDL domain definitions.

Several works use LLMs as planning aids or model-
creation aids for the Minecraft domain. However, none of
these are concerned with formalizing actions models, but
with learning how to perform and combine complex tasks.
Voyager is a Minecraft agent which uses LLMs to gener-
ate a curriculum for learning and to combine low-level skill
function code to make more complex skill functions (Wang
et al. 2023). Plan4MC uses LLMs to construct a graph of
Minecraft skills, and then searches over the graph to find a
path to accomplish complex tasks (Yuan et al. 2023). Ghost
in the Minecraft uses LLMs to decompose complex tasks
described in natural language into easier subtask also de-
scribed in natural language and to construct natural language
plans, both of which it stores as text for re-use on similar
problems (Zhu et al. 2023). We use the low-level JavaScript
functions of the Voyager work as one of our inputs.

3 Preliminaries
PDDL is one of the earliest and most-commonly used for-
malisms in classical planning, which allows the modeling of
agent actions as unitary black boxes, abstracting the com-
plexity of performing an action away behind a set of precon-
ditions and effects that encode a transition function. We use
it as the formalism to translate our functions.

In PDDL, a planning model is represented using two sepa-
rate components: the planning domain and the problem. The
domain usually contains the types of objects, type relation-
ships, lifted predicates used to describe potential states, and
a set of lifted operators (also referred to as action schemas).
An operator is further defined using a set of preconditions,
add effects, and deletes. Preconditions specify when a possi-
ble instance of the operator (i.e., an action) can be executed,
and the add and delete effects describe the effect of execut-
ing that action. Here each of these components are expressed
using a set of lifted predicates. Both the predicates and op-
erators in the domain definitions are usually expressed using
variables that stand in for possible objects. The problem, on
the other hand, lists the possible objects that can be used,
along with the initial state and goal specification.

One obtains the actions that will be executed in the envi-
ronment by replacing each of the variables with a compatible
object from the problem through a process called ground-
ing. Grounding also provides us with grounded predicates
obtained by replacing the variables in the lifted predicates
with objects. Each state possible for a given problem is de-
scribed using a subset of grounded predicates. A solution for
a given planning model is a sequence of actions whose ex-
ecution in the initial state will result in a state that satisfies
the goal specification.

Coming to Minecraft, an example lifted predi-
cate for the fact “object located at a grid square”
could be represented by a predicate of the form
object location(?item - object ?place -
gridSquare). Here, object location is the pred-
icate name, ?item and ?place the variables. Finally,
object and place give the corresponding object types
of the variables. Here is an example of a PDDL operator
from the domain, where an agent removes an item from its
inventory to place it in the world.

(:action place
:parameters (?player ?object ?place)
:precondition (and
(inventory_object ?player ?object)
(not (object_location ?object ?place))
(agent_location ?player ?place))

:effect (and
(not(inventory_object ?player ?object))
(object_location ?object ?place)))

The action describes this process via a state represented
by the variables ?player, ?object, and ?place. Its
preconditions are that (1) the ?object is in the agent’s
inventory, (2) the agent is located where they want to
place the object at, and (3) and no other object is cur-
rently located in the same place. The add-list effects
comprise (object location ?object ?place) which
means the ?object has now been set some ?place.
The delete-list effects are (not (inventory object
?player ?object)), with the “not” keyword indicating
that the predicates it prefixes should be removed from the
state. The result of this is that the effects negate all predi-
cates in the preconditions.

3.1 Test Domain: Minecraft

Minecraft is a 3D video game which allows a player to
control a character to gather resources and craft items.
Essentially, resources are combined to create items using
recipes. For example, the player gathers resources like wood
from trees, and then uses these to make sticks and wood
planks, which are then combined to craft an item called a
wooden-sword. While simple crafting recipes (e.g., planks,
sticks, crafting table) can be executed without additional
equipment, more complex recipes (e.g., swords) must be
crafted on a crafting table, which the player usually must
craft themselves and place somewhere in the Minecraft
world. Minecraft has been used in a number of works (e.g.,
(Wang et al. 2023), (Zhu et al. 2023)) and has two attributes
that make it an attractive domain for this work. First, many
automated bots exist to automate gameplay agents, so there
is lots of code to draw from. The Minecraft world is a large
and complex environment with varied tasks, so some ele-
ments of the game may not be completely supported by
existing bots, but many tasks are implemented sufficiently
for an initial case study. Second, a set of wiki documents is
available in the form of written natural language that we can
use as input. For a more detailed description of the domain
see the appendix.



4 Pipeline for Generating PDDL Actions
Figure 1 shows the two-stage pipeline for translating action
implementations into PDDL operators comprising: (1) the
Summarization Stage and (2) the Extraction Stage. In each
stage, inputs are injected into prompts for the LLM. Some of
these inputs are user-provided and some are generated by an
LLM in previous stages. The pipeline converts a JavaScript
function implementing an action for an existing robot con-
troller into a PDDL action. This process unfolds iteratively,
ending with all desired actions being constructed following
a series of successive pipeline cycles. Some prompts can be
found in the appendix, as well as a discussion of the gener-
alizability of the prompts, for use with other domains.

4.1 The Summarization Stage
The Summarization Stage summarizes a provided function
implementing an action. The input of the Summarization
Stage is a JavaScript function which implements an ac-
tion. Its outputs are two natural-language summaries de-
scribing the provided function, one focused on giving a gen-
eral overview, the other on elucidating that action’s goals,
preconditions, and effects in natural language. The Summa-
rization Stage queries Llama3 to generate two different sum-
maries of a function based on its implementation. The first is
a concise, high-level 3-5 line summary of the function. The
second is a more targeted 1-sentence summary of 25 words
or less which describes the goals, preconditions and effects
of the function. In Figure 1, these summaries are the green
boxes numbered (1) and (2). To produce summary 1, Code-
stral is provided with a prompt containing its instructions
and the function implementation. To generate summary 2,
Codestral is provided a prompt containing the function im-
plementation, and summary 1.

4.2 The Extraction Stage
The Extraction Stage has two sub-stages. The first substage
selects the appropriate types and predicates for the target ac-
tion from the provided pool via Codestral (Codestral-22B-
v0.1) and prompts P3 and P4. Here, Prompts P3 and P4 are
constructed by inserting the following inputs into a prompt
template: (i) NL Function Summary (output 1 in Figure 1),
(ii) NL Goals, Preconditions, & Effects Summary (output
2 in Figure 1), (iii) NL Domain Background Info, and (iv)
either (for prompt P3) the Object Types Hierarchy or (for
prompt P4) the Predicate Pool. Prompt P3 instructs Code-
stral to select the subset of types necessary to construct the
specific PDDL action, without changing them in any way.
The types selected by Codestral correspond to the green,
#3 box in Figure 1. Similarly to Prompt P3, Prompt P4 in-
structs Codestral to select the subset of predicates necessary
to construct the specificed PDDL action without duplicat-
ing or changing them in any way. The predicates selected by
Codestral correspond to the green, #4 box in Figure 1.

In the second phase of the Extraction Stage, a PDDL ac-
tion is generated based on the function summaries from the
Summarization Stage via Codestral and prompt P5. Here,
Prompt P5 is prepared by inserting the following inputs into
the P5 template: (i) NL Function Summary (output 1 in Fig-
ure 1), (ii) NL Goals, Preconditions, & Effects Summary

(output 2 in Figure 1), (iii) NL Domain Background Info,
(iv) Selected Types (output 3 in Figure 1, generated with
Prompt 3) and (v) Selected Predicates (output 4 in Figure 1,
generated with Prompt 4). Note that this is essentially the
same inputs used to create Prompts P3 and P4, except that
the full predicate pool and type hierarchy are replaced by
Codestral-selected subset of predicates and types, and P5 is
given both the predicates and types, instead of one or the
other.

Using this information, Codestral is prompted to write
a single PDDL action using only the types and predicates
it has been given, and any not-equal constraints needed to
ensure variable uniqueness. Although we could attempt to
generate the predicates in addition to the actions, for now
we leave that to future work. Under optimal circumstances,
Codestral will use the list of selected types when generat-
ing parameters for the action, and the list of selected pred-
icates without any types included as fluents for the action.
The human-provided background information and function
summaries should guide the action’s overall construction.
The PDDL action generated by Codestral corresponds to the
green, #5 box in Figure 1.

5 Evaluation
We evaluate how well the pipeline produces valid PDDL ac-
tions. The goal is to create a complete planning model and
to probe the impacts of temperature and predicate specificity
on that task. For the Summarization Stage of the pipeline
we used Llama3 (8b-instruct-fp16, from Ollama) due to the
strength of its general knowledge and language understand-
ing capabilities. For the Extraction Stage of the pipeline, we
used Codestral due to its superior ability to understand and
generate code.

We ran experiments on a Lambda Laboratories quad
AMD 1.5GHz EPYC 64 core system with 2TB of RAM,
8 NVIDIA A-100 80GB GPUs, and 32TB of SSD storage.

5.1 Ground-Truth Domains
To evaluate their accuracy, all actions generated by the
pipeline were compared to several ground truth domains that
were authored based on the Voyager JavaScript Functions,
detailed below. These included domain and problem files for
crafting a craft table, crafting a craft table and sticks and/or
planks, and crafting all previously mentioned items and a
wooden sword. These actions were chosen because generic
Voyager functions for them existed, and because of their
simplicity, as none require the player to interact with other
Minecraft entities, consider time constraints, or implement
overly complicated recipes to be made. This was important
because compared with standard programming languages,
PDDL has limited expressiveness, making it more difficult
to use when modeling more advanced problem-solving sce-
narios. Such domains represent one way to craft these ob-
jects in Minecraft. In the open-world game, more options
for crafting them exist.

All domain problem files had the player start in a desig-
nated location, without any items in their inventory or craft-
ing tables in their environment. All items the player could



collect or craft were treated as distinct objects that could be
passed into a given predicate as the player achieved their
goals (i.e. stick1, stick2, stick3).

5.2 Pipeline Inputs
Function Code We use a subset of the JavaScript func-
tions mostly taken from the Voyager project as our input
functions. See the appendix for more information.

Natural Language (NL) Domain Background Info The
NL background information provided as input to the Extrac-
tion Stage of the pipeline comprised 2-4 hand-written sen-
tences explaining the expected preconditions and effects for
the target action, and other pertinent facts related to it, like
the specific ingredients needed to craft an item and whether
it requires a crafting table. Details are in the appendix.

Objects Type Hierarchy This hierarchy included
the types: player, craftTable, plankBlock,
stickItem, woodSword, woodPickaxe1, gridSquare,
and some object

Here, the craftTable, plankBlock, woodBlock,
stickItem, woodenSword, and woodenPickaxe types
represent specific objects in Minecraft, and some object
is their parent type.

Predicate Pool The predicate pool used for these experi-
ments contained:

• (agent located at ?agent - player ?square
- gridSquare)

• (object located at ?someobject -
some object ?square - gridSquare)

• (connected ?current position - gridSquare
?next position - gridSquare)

• (HasWoodBlock ?agent - player ?wood -
woodBlock)

• (HasPlankBlock ?agent - player ?plank -
plankBlock)

• (HasStickItem ?agent - player ?stick -
stickItem)

• (HasWoodenSword ?agent - player ?sword -
woodSword)

• (HasWoodenPickaxe ?agent - player
?pickaxe - woodPickaxe)

• (HasCraftTable ?agent - player ?table -
craftTable)

5.3 Main Experiment
In the main experiment, we evaluated the quality of the ac-
tion model generated under different values of the tempera-
ture parameter, given the same predicate pool We generated
crafting actions for four items: a table, planks, sticks and a
wooden sword. Temperature is a hyperparameter which con-
trols the LLM’s creativity, or ability to choose a less proba-
ble next word. Increasing the temperature enables the LLM

1This object type is included as part of this hierarchy and as
part of the predicate pool via HasWoodenPickaxe because ini-
tially experiments for creating woodPickaxe actions were also con-
ducted. However, we later narrowed our focus to the main actions
presented in this paper, abandoning the initial, incomplete experi-
ments related to crafting a woodPickaxe.

to produce more varied responses. Here, Llama3 was set to a
temperature of 0.3 to allow for a controlled level of creativ-
ity that wasn’t excessively unpredictable, while the Code-
stral temperature was varied between 0.1, 0.5, 0.75 and 1.
We generated 5 actions for each item and for each Code-
stral temperature setting. This created 20 PDDL actions per
inputted JavaScript function, for a total of 80 PDDL actions.

Results All generated actions were categorized into cor-
rect, debatable or wrong, results shown in Figure 2. All en-
tirely accurate actions were labeled as correct, while any ac-
tions with one or more errors were labeled as wrong. An
action was only labeled as debatable if it would execute in
some appropriate circumstances but not others. For example,
if a predicate was added to an action’s precondition allow-
ing it to only be executed once or requiring that a player have
access to a crafting table when it’s not necessary.

Figure 2a shows craft-table-specific results. At the lowest
Codestral temperature considered, the pipeline was consis-
tently able to construct actions matching the ground truth.
As higher temperatures were tested, this accuracy slowly di-
minished over time until 60% of the actions constructed by
the pipeline were classified as incorrect.

Figure 2b shows specific results for crafting sticks in
Minecraft. Again, at the lowest Codestral temperature con-
sidered, the pipeline was able to construct actions perfectly
matched to the ground truth. As higher temperatures were
tested, the pipeline outputs became less accurate. This was
especially notable at a Codestral temperature settings of 0.5
and 1, where 80% of the actions constructed by the pipeline
were classified as incorrect.

Figure 2c shows results for crafting planks in Minecraft.
Here, unlike the other experiments run, lower temperature
settings resulted in the pipeline repeatedly failing to con-
struct any actions that matched the ground truth. Higher tem-
peratures showed a slight improvement, with 20% of the
actions created being classified as correct for the final two
highest temperature settings.

Figure 2d shows results for crafting wooden swords in
Minecraft. Aside from the results for crafting a craft table,
this set of experiments achieved the second highest accu-
racy. Here, at the 0.1, 0.5 and 0.75 temperature settings, the
pipeline was able to construct actions matching the ground
truth 40% of the time, with the remaining 60% of the ac-
tions it created being executable under most but not all cir-
cumstances. This accuracy declined to 20% once the highest
temperature setting was applied.

These experimental results show the craftCraftTable ac-
tion was most often created correctly, followed by craft-
WoodenSword, craftSticks and craftPlanks. Additionally,
they show lower temperature settings most often resulted in
the pipeline correctly producing PDDL actions for crafting a
table, sticks and a wooden sword but not for crafting planks.
However, while at higher temperature settings the pipeline’s
ability to create correct PDDL actions declined for all craft-
ing actions, it slightly improved for the craftPlank action.

To better understand this, we analyzed all incorrect action
instances to determine consistent points of failure, shown
in Figure 3. In all, 8 main failure points were identified



(a) Craft Table Results (b) Sticks Results

(c) Planks Results (d) Wooden Sword Results

Figure 2: Experiment results showing the number of correct, debatable, and incorrect PDDL actions generated by the pipeline
for crafting a craft table, planks, sticks, and a wooden sword in Minecraft. Each chart corresponds to a specific craft action, for
which 5 runs were performed for each temperature setting combination where Llama3 was set to 0.3, and Codestral to 0.1, 0.5,
0.75, or 1. For the PDDL domains considered, correct actions were completely error-free, debatable actions were executable
under certain circumstances, and incorrect actions were completely inexecutable.

Figure 3: The frequency and distribution of errors among all debateable and incorrect crafting-specific actions.



with Codestral’s most common mistake being leaving out
required action parameters, followed by adding into actions
unnecessary or potentially error-producing predicates. One-
off random errors aside which included things like including
extra parentheses, the next most common mistake was for-
getting or modifying certain required action predicates.

Outside of these, Codestral’s errors tended to be more
granular. Sometimes it would incorrectly add dashed pa-
rameters into predicates, for example, adding - wooden-
Plank into the predicate (HasPlank ?agent ?plank -
woodenPlank). Or, it would misunderstand what predi-
cates and variables belonged together, creating predicates
like (HasWood ?agent ?plank) where ?plank should
have been the variable ?wood. Lastly, with actions that in-
cluded many, often similar objects, Codestral would some-
times fail to use distinct object types (e.g. using Plank
vs. Plank1, Plank2, etc.) or include not-equal constraints
to differentiate between objects. Because a large part of
Minecraft is a player crafting new objects using different
quantities of items in their inventory, this was especially
problematic though a less commonly made mistake.

Examining this data in its entirety, we see across all exper-
iments, every action was incorrect at least once. However,
the errors leading to this seemed to be specific to each action.
For example, whereas the craftPlank action was routinely
wrong because Codestral forgot to pass in all required pa-
rameters, the craftSticks action was often wrong when Code-
stral failed to differentiate between its different stick ob-
jects (i.e. using Stick for all objects vs. Stick1, Stick2,
etc.). Similarly, most of the craftWoodenSword actions were
classified as debateable because Codestral designed them in
such a way that crafting a sword was only possible if the
player did not already possess one. As a result, the action
was executable, but at most once. In Figure 4, we show a
more in-depth breakdown of errors by specific crafting ac-
tion type.

6 Discussion
Prior work has demonstrated that LLM’s are poor at nu-
meric and spatial reasoning (Xie et al. 2023). To address this
challenge, the STRIPS planning formalism was adopted for
this work to reduce the complexity and numeric reasoning
needed to generate correct actions. However, during the ini-
tial prompt construction phase, Codestral’s sensitivity to the
language used in the prompts given to it seemed to result in
errors of a comparable kind, some of which carried over to
our experimental results. Thus, while the pipeline was of-
ten able to produce correct PDDL actions, our work also il-
lustrates the difficulty in using LLM’s to construct STRIPS
PDDL planning models.

When designing our experimental prompts, we found that
when specific domain background information indicating
what an action’s goals, preconditions and effects should be
were given to Codestral, its accuracy greatly increased. But
when the same information with no context was given (i.e.
“two planks of any kind and one stick.”), Codestral’s abil-
ity to translate this information into valid actions dropped
significantly. Similarly, telling Codestral when a crafting ta-
ble was needed to execute a crafting action would at times

result in erroneous outputs (i.e. including ”A crafting table
is not needed to perform this action” diminished the LLM’s
performance). This was most evident for the craftTable ac-
tion, where to make a crafting table, Codestral would often
illogically require the player to already possess one. How-
ever, when such information was omitted from its input, in
some cases, Codestral’s ability to construct this action rose
to 100% accuracy during our experiments (see Figure 2).

In the initial testing phase, Codestral would also often ig-
nore prompt directions to modify different predicates or in-
clude extraneous text along with its answer. For example,
when player was omitted as a type given to Codestral, it
would frequently add it to the predicates it used anyways,
making the model more error-prone overall. Because of this,
in the main experiments, player was always included in
the list of types fed into the pipeline, and Codestral was in-
structed to provide its answers inside triple single quotes to
differentiate them from excess words. While incorporating
these things into the final prompts and supplied list of type-
s/predicates given to the pipeline improved Codestral’s ac-
curacy, they inevitably raise further questions about whether
other, less apparent linguistic elements present in each might
still be influencing its outputs in unforeseen ways. It is not
clear how to force the LLM to obey instructions on the first
pass, but it may be possible to force the LLM to identify
and/or revise its answer from external feedback as demon-
strated by Chen et al. (2023); Smirnov et al. (2024).

With this, Minecraft is a complicated game for which
writing an accurate domain that captures all facets of
the game is difficult. When initially testing Codestral’s
response to the types and predicates from our ground-truth
model, including the predicate (object in inventory
?agent - player ?item - some object) instead
of (HasInInventory ?agent - player ?item -
some object) was shown to more positively effect its
output. Making this connection may be difficult for much
more complicated domains.

In the main experiments, Codestral was consistently
able to select the correct types for a given action with
a very high accuracy. While sometimes it would se-
lect more types then it needed to make a given action,
this overestimation never appeared to negatively effect
its final outputted actions. When selecting predicates,
Codestral fluctuated between exactly reproducing the
selected predicates, and expanding the predicate us-
ing a set of parameter names, i.e., (HasPlankBlock
?player ?plank) vs (HasPlankBlock ?player
?plank1), (HasPlankBlock ?player ?plank2),
(HasPlankBlock ?player ?plank3). With certain
actions, such as craftWoodenSword, Codestral would
consistently omit certain predicates. Sometimes these
missing predicates would be added to the final action it
created. Other times, Codestral would entirely forget them
or incorrectly change another predicate it had selected in an
attempt to remedy this.

Despite this, such experiments revealed that the major-
ity of the actions generated by the pipeline were either cor-
rect or required only minimal modifications—typically no
more than a few adjustments—to achieve correctness. In fu-



(a) Craft Table Error Results (b) Sticks Error Results

(c) Planks Error Results (d) Wooden Sword Error Results

Figure 4: The frequency and distribution of errors among all debateable and incorrect actions by specific action type.

ture iterations of this work, incorporating an error detection
loop could significantly enhance the accuracy of such ac-
tions, mitigating the occurrence of errors in them that are
often minor or recurrent in nature.

7 Future Work
We see seven major areas for future work. The first area
is an ablation study to evaluate the effectiveness of the
LLM-generated function summaries and user-provided nat-
ural language domain information. The second area is to
increase the amount of code we provide to the function
summarizer. Currently we provide only the function defi-
nitions themselves, but not the code for any of the func-
tions they call, forcing the LLM to “guess” based on the
function names. Provided definitions for the sub-functions
to the LLM, or providing the LLM with information of the
expected call-hierarchy might increase the accuraccy of its
summaries. The third area is to prompt the LLM to suggest
predicates and types based on the function summaries and
additional natural language domain knowledge. The fourth
is to leverage a library like Outlines (Willard and Louf 2023)
for structured generation with LLMs to reduce the number
of syntax errors. The fifth area is to add an error-correction
component for prompting the model to refine either sum-
maries or actions. Previous works have demonstrated the
utility of an error-correction loop, where some combination
of parser and logic-checker analyze the LLM output and cre-
ate error messages that can be used to query the LLM for
corrections. Because we are learning actions for an existing
bot, we could also detect errors via gameplay by tracking
when plans constructed with our planning model fail. The
sixth area is identifying complex functions and when they
need to be broken into multiple PDDL actions. Controllers
are typically written in Turing-complete languages. PDDL
and other formal languages used by planners to express op-

erators are typically not Turing-complete. This means that
some functions will require being broken into multiple ac-
tions. When such actions appear in a plan, they will need
to be translated back into a single function-call for the con-
troller to execute. The seventh area is to test the performance
of other LLMs in each stage of the pipeline.

8 Conclusion
We have created a two-stage pipeline for generating a PDDL
planning model tailored to an existing operational model–
i.e., a controller implementation for a robot. The pipeline
uses an LLM first to summarize a function implementing a
single action, then prompts an LLM to generate a PDDL ac-
tion based on the summary, domain background knowledge
provided as natural language, and provided predicates and
types. Running the pipeline on each action implemented in
the bot’s controller can create a complete planning model.
We evaluated the pipeline on JavaScript functions that im-
plement actions for a Minecraft bot. We ran two primary
experiments analyzing what PDDL actions the pipeline was
capable of creating, the errors it often made, and the effect
different LLM temperature settings had on its output.

Our results show that the pipeline successfully converts
Javascript code into valid PDDL, albeit with some of the
same issues as previous works on generating PDDL from
natural language. The results also revealed that different
temperatures exhibit a slight trade-off in action quality.
When an action is generated correctly at a low temperature,
raising the temperature will decrease its quality. On the other
hand, a low-quality action generated at low temperature will
slightly improve in quality using a higher temperature.
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Appendix: Creating PDDL Models from Javascript using LLMs: Preliminary Results

In this appendix we show several examples of correct and incorrect PDDL actions generated during Experiment 1, the work
outlined in the main paper. We subsequently present Experiment 2, a preliminary experiment which tests the effect of different
predicate sets on actions produced by the pipeline, for which a few example outputs are also provided. Following this, we
describe the details of (1) the JavaScript functions comprising the bot controller that we used as input, (2) the hand-written
ground-truth model used to compare against the generated model, (3) the natural language domain background information,
and the (4) prompts fed into the pipeline.

A Experiment 1: Model Generation Under Different Temperatures

Experiment 1 revealed our pipeline could successfully convert Javascript code into valid PDDL but that different LLM temper-
ature settings exhibited a slight trade-off in the actions produced. Specifically, low temperature settings were shown to produce
better quality actions, while higher temperatures produced slightly worse ones. Here, we provide several examples of correct
versus incorrect actions produced by the pipeline for crafting a table, planks, sticks, and a wooden sword.

A.1 Craft Table Actions

(A) Correct craft table action for temperature settings of 0.3 for Llama3 and 0.1 for Codestral

(B) Incorrect craft table action for temperature settings of 0.3 for Llama3 and 0.5 for Codestral

In Minecraft, a crafting table is an essential item which allows players to craft a wide variety of items and tools, vital for
advancing in the game. To make a crafting table, a player must possess four unique plank objects. Upon this action’s execution,
these resources are consumed and the player is left with a crafting table in their inventory.

Figure A shows a correct craft table action generated by the pipeline at temperature settings of 0.3 for Llama3 and 0.1 for
Codestral. Here, distinct parameters for the player, craftTable and each individual plankBlock object are passed in.
To reflect the four unique plank objects required to make a craft table, Codestral correctly includes four HasPlankBlock



predicates along with the necessary number of not-equal constraints to guarantee all plank objects are unique. The effect of
this action is that all HasPlankBlock predicates are false, indicating this resource has been used and the HasCraftTable
predicate is true, indicating the player now possesses one.

In contrast, Figure B shows an incorrect craft table action generated by the pipeline at temperature settings of 0.3 for
Llama3 and 0.5 for Codestral. Here, Codestral has failed to pass in distinct parameters for craftTable and each indi-
vidual plankBlock object. Additionally, it has mistakenly included dashed types inside most of the predicates used inside
the action. For example, including - craftTable inside the HasCraftTable predicate where it does not belong.

A.2 Craft Planks Actions

(C) Correct craft planks action for temperature settings of 0.3 for Llama3 and 0.5 for
Codestral

(D) Incorrect craft plank action for temperature settings of 0.3 for Llama3 and 0.5 for
Codestral

Planks are resources used to create many common items in Minecraft. To craft planks, a player must possess four unique
wood block objects. Upon this action’s execution, these resources are consumed and the player is left with four unique plank
block objects in their inventory.

Figure C shows a correct craft planks action generated by the pipeline at temperature settings of 0.3 for Llama3 and 0.5 for
Codestral. Here, distinct parameters for player and each individual woodBlock and plankBlock objects are passed in. In
accordance with the Minecraft recipe, Codestral correctly includes four unique wood block objects required to make planks in
the action’s precondition along with the proper number of not-equal constraints to guarantee all wood and plank block objects
are unique. The effect of this action is that all HasWoodBlock predicates are false, indicating these resources have been used,



and four true HasPlankBlock predicates, indicating the player now possesses these. Here, no HasCraftTable predicate
is included in the action because in Minecraft craft tables are not required to craft planks.

Figure D shows an incorrect craft planks action generated by the pipeline at the same temperature settings of 0.3 for Llama3
and 0.5 for Codestral. Here, Codestral has failed to pass in distinct parameters for each individual plankBlock object (i.e.
?plank1-4). Perhaps due to this, it has also failed to include not-equal constraints for any of the plankBlock objects, and
has mistakenly used wood1, wood2, wood3 and wood4 inside the HasPlankBlock predicates in the action effect section,
instead of the correct variables plank1, plank2, plank3 and plank4.

A.3 Craft Sticks Actions

(E) Correct craft sticks action for temperature settings of 0.3 for Llama3 and 0.1 for Codestral

(F) Incorrect craft sticks action for temperature settings of 0.3 for Llama3 and 0.5 for Codestral

Sticks are resources that can be crafted or directly gathered, fished or traded for in the Minecraft world. To craft sticks, a
player must possess two unique plank block objects. Upon this action’s execution, these resources are consumed and the player
is left with four unique stick block objects in their inventory.

Figure E shows a correct craft sticks action generated by the pipeline at temperature settings of 0.3 for Llama3 and 0.1 for
Codestral. Here, distinct parameters for player and each individual plankBlock and stickItem object are passed in. In
the action precondition, Codestral correctly includes the two unique plank block objects to make sticks, and the proper number
of not-equal constraints to guarantee all plank and stick objects are unique. The effect of this action is that all HasPlankBlock
predicates are false, indicating these resources have been used, and four true HasStickItem predicates, indicating the player
now possesses these. Here, no HasCraftTable predicate is included in the action because in Minecraft craft tables are not
required to craft sticks.

Figure F shows an incorrect craft sticks action generated by the pipeline at the temperature settings of 0.3 for Llama3
and 0.5 for Codestral. Here, Codestral has failed to pass in distinct parameters for each individual stickItem object (i.e.
?stick1-4), opting to just include stick - stickItem. Further, it has failed to include any stick object not-equal
constraints in the action’s precondition, and any distinct stick variables in the action’s effect section, choosing instead to use
?stick inside all HasStickItem predicates rather then ?stick1, ?stick2, ?stick3, and ?stick4.

A.4 Craft Wooden Sword Actions
Wooden swords are categorized as weapons in Minecraft, most often used during combat. To craft a wooden sword, a player
must possess two unique plank block objects, a stick object and a crafting table. Upon this action’s execution, the plank and
stick resources are consumed and the player is left with a single wooden sword object in their inventory.

Figure G shows a correct craft wooden sword action generated by the pipeline at temperature settings of 0.3 for Llama3
and 0.1 for Codestral. Here, distinct parameters for player, woodenSword, and each individual plankBlock and



(G) Correct craft wooden sword action for temperature settings of 0.3 for Llama3 and 0.1 for Codestral

(H) Incorrect craft wooden sword action for temperature settings of 0.3 for Llama3 and 1 for Codestral

stickItem object are passed in. In the action precondition, Codestral correctly includes the two unique plank block ob-
jects, stick object and craft table. Additionally, it includes a single not-equal constraint to guarantee both plank objects are
unique. The effect of this action is that the HasStickItem and all HasPlankBlock predicates are false, indicating these
resources have been used, and the HasWoodenSword predicate is true, indicating the player now possesses one. Here, a
HasCraftTable predicate is included because the player must possess one to craft a wooden sword in Minecraft.

Figure H shows an incorrect craft wooden sword action generated by the pipeline at the temperature settings of 0.3 for Llama3
and 1 for Codestral. Here, Codestral has included random predicates in the action’s precondition, effectively necessitating that
to craft a wooden sword, the player cannot already possess one nor can any exist. In one of these randomly added predicates,
Codestral has also mistakenly added a - wooden sword dashed type. However, without these mistakes, the action would
otherwise be correct.

B Experiment 2: How does predicate specificity impact action quality?

To test how feeding the pipeline different predicate sets might effect the actions it constructs, a preliminary series of tests
were run. In addition to the crafting actions created in the previous experiment, here collect, place, and move actions were
also generated. During this experiment, Llama3 was set to a temperature of 0, Codestral temperature was varied between the
temperatures of 0, 0.5, and 1, and three different predicate pools varying in their level of abstraction and size were used as
pipeline inputs.

B.1 Predicate Pools
All three pools contained a basic set of predicates:

• (agent located at ?agent - player ?square - gridSquare)

• (object located at ?someobject - some object ?square - gridSquare)

• (connected ?current position - gridSquare ?next position - gridSquare)

Added to this basic set to create the different pools were a set of predicates for indicating if the Minecraft agent possessed
an item. Predicate pool 1 contained an abstract predicate for this: object in inventory. Predicate pool 2 contained
item-specific predicates for this:



• (HasWoodBlock ?agent - player ?wood - woodBlock)

• (HasPlankBlock ?agent - player ?plank - plankBlock)

• (HasStickItem ?agent - player ?stick - stickItem)

• (HasWoodenSword ?agent - player ?sword - woodSword)
• (HasWoodenPickaxe ?agent - player ?pickaxe - woodPickaxe)

• (HasCraftTable ?agent - player ?table - craftTable)

Predicate pool 3 contained the predicates from pool 1 and 2.

For all temperature setting combinations, a single action was generated for moving, placing an item, collecting an item, and
crafting a table, planks, sticks, and a wooden sword, using each of these predicate sets. This resulted in 3 PDDL actions being
generated per inputted JavaScript function, for a total of 21 PDDL actions per predicate pool or a total of 63 actions across all
predicate pools.

B.2 Using the object in inventory Predicate Only
To test if using less and more abstract predicates increased Codestral’s ability to create correct PDDL actions, predicate pool
1 was used. This approach resulted in the pipeline successfully creating actions for collecting and placing items (shown in
Figures J and K) while also getting the craftPlank action correct more times compared to the use of other predicate sets.
However, for item-specific crafting actions, this predicate set seemed to introduce more errors, as here the pipeline was never
able to successfully create the craftSticks, craftCraftingTable or craftWoodenSword actions or the more generic move action.

Interestingly, most incorrect craftCraftingTable actions (shown in Figure L) stemmed from the object located at
predicate. As Codestral would select the correct number of predicates needed to craft a table, but would mistakenly use
object located at in place of the object in inventory predicate. The craftWoodenSword action was consistently
wrong due to random errors like additional parentheses, and craftSticks as a result of failing to differentiate between its differ-
ent stick objects. The move action consistently messed up the variables contained within the object located at predicate.
We show this below in Figure I where the agent begins at location ?current position and the object it’s moving to at
?goal position. However, after the action is executed, while the agent is at ?goal position, the object they’ve moved
to is now shown as being at their former location, ?current position. Additionally, we see Codestral has randomly added
the predicate (different ?current position ?goal position) into the action’s precondition.

(I) Incorrect move action for Llama3 and Codestral temperature settings of 0 using pred-
icate pool 1

(J) Correct collect action for Llama3 and Codestral temperature settings of 0 using pred-
icate pool 1

B.3 Using Item-Specific Predicates Only
To test if more specific predicates increased Codestral’s ability to create correct PDDL actions, it was next given predicate pool
2. Using this item-specific predicate set helped the pipeline create valid item-specific PDDL actions for craftCraftingTable,



(K) Correct place action for Llama3 and Codestral temperature settings of 0 using predi-
cate pool 1

(L) Incorrect craft table action for Llama3 and Codestral temperature settings of 0 using
predicate pool 1

craftSticks, craftPlank and craftWoodenSword. However, it reduced the correctness of the more generic collect, place and
move actions, getting them all wrong. Here, the collect and place actions (shown below in Figures M and N) incorrect-
ness consistently stemmed from random errors whereas the move action again mixed up the variables contained within the
object located at predicate, like predicate pool 1.

B.4 Using Item-Specific & object in inventory Predicates

To test if using a combination of abstract and specific predicates increased Codestral’s ability to create correct PDDL actions,
it was given predicate pool 3. Using this combined predicate set, Codestral was able to achieve the highest accuracy among all
constructed actions. Out of three runs, all craftCraftingTable and craftWoodenSword actions, two craftSticks actions, and one
craftPlank action was correct. Though an executable collect action was generated across all three temperature settings, due to
Codestral modifying one of its predicates compared to the ones given, we classify these as debateable. Unfortunately we see
for predicate pool 3, Codestral was never able to correctly generate the place or move actions. Here, the place action suffered
from the introduction of random errors and typed predicates where they didn’t belong. And the move action again mixed up the
variables contained within the object located at predicate, as shown with predicate pools 1 and 2.

B.5 Discussion

Across all temperature settings and predicate pools we see the pipeline was never able to generate a correct move action. Ad-
ditionally, we see while predicate pool 3 seemed to have the highest overall accuracy among all predicate sets, predicate pool
1 resulted in the highest number of correct place, collect and craftPlank actions, while predicate pool 2 seemed to more con-
sistently generate correct item-specific actions, such as craftWoodenSword. However, because the number of actions generated
among all predicate pools and temperature settings was small, more testing would be needed to confirm the consistency of these
results and to identify other emergent trends in the data like whether or not the different temperature settings had much impact
on the produced actions.



(M) Incorrect place action for Llama3 and Codestral temperature settings of 0 using pred-
icate pool 2. Here, Codestral forgot to add ”or” to the effect section to pinpoint which item
is being placed.

(N) Incorrect collect action for Llama3 and Codestral temperature settings of 0 using
predicate pool 2. Here, Codestral became focused on only placing wood objects, only
passing in and using the parameter only passed in the parameter ?wood. Additionally, it
added in random, incorrect predicates such as (notify "Collect wood.").

C Pipeline Inputs & Prompts
C.1 Voyager Javascript Functions
All Javascript bot controller functions were sourced from the Git repository of the Voyager project or PrismarineJS/mineflayer-
pathfinder repository. We selected four: craftItem, placeItem, goTo, and CollectBlock. Note that the craftItem and placeItem
functions call multiple smaller functions during their execution, including the goTo and CollectBlock functions. All downloaded
functions were used-as-is, excepting the CollectBlock function, which was extracted from an enclosing class. This was done
to help focus the LLM’s attention only on the code it should summarize. These functions can be found at the following web
addresses:
• craftItem Function: https://github.com/MineDojo/Voyager/blob/55e45a880755d0c8c66ca7fb5fe7962ac8974f89/voyager/

control\ primitives\ context/craftItem.js
• GoTo/Move Function: https://github.com/PrismarineJS/mineflayer-pathfinder/blob/master/lib/goto.js
• CollectBlock Function: https://github.com/MineDojo/Voyager/blob/55e45a880755d0c8c66ca7fb5fe7962ac8974f89/

voyager/env/mineflayer/mineflayer-collectblock/src/CollectBlock.ts
• placeItem: https://github.com/MineDojo/Voyager/blob/55e45a880755d0c8c66ca7fb5fe7962ac8974f89/voyager/control\

primitives\ context/placeItem.js

C.2 Ground-Truth Minecraft PDDL Models
In the ground-truth Minecraft domains used in Experiment 1 and 2, the generic functions expressed in the Voyager JavaScript
Functions were converted into multiple, specific function instances. For example, the compound craftItem Voyager function



which has a player move to a crafting table, look up a recipe and craft an item, was instead expressed as four different actions
in our domains: move, collectWood, craftPlanks, and craftTable. More specifically, the “Make crafting table” domain included
move, collectWood, craftPlank and craftTable actions. The “Make a crafting table and wooden sword” domain included all
previously mentioned actions, as well as craftWoodenSword action.

C.3 Summarization Stage: Example Output NL Summaries

Here we give example summaries generated by the Summarization Stage for each of our test functions. These summaries are
generated using Prompts P1 and P2 and inserted into Prompts P3, P4, and P5 in the Extraction Stage of the Pipeline. Note that
for readability, some of the syntax has been omitted from this prompt (Ex: “‘ marks around some responses for later parsing
purposes.) or slightly modified (Ex: adding bullets to each item under ”Recipes Domain Background Info.”). The content itself
was not changed.

For Experiment 1 The following is an example summary created during the Summarization Stage for the Voyager function
craftItem.

Function Name: craftItem

NL Function Summary:
This craftItem function enables a player to create a specific item in Minecraft by using a set of resources
and a crafting table. The function requires the name of the desired item and the quantity to be crafted, and it will
automatically gather the necessary resources and perform the crafting process. It first locates the crafting table
and then uses its position to navigate the bot towards it before proceeding with the crafting action.

NL Goals, Preconditions & Effects Function Summary:
The goal of the craftItem function is to enable a player to create a specific item in Minecraft by using a set
of resources and a crafting table, allowing them to acquire the desired quantity of the item. The precondition of
the craftItem function is that there must be a crafting table present in the game world for the player to use,
as well as sufficient resources available to craft the item, and that the player has access to these resources and
can navigate to the crafting table. The effect of the craftItem function is that it will gather the necessary
resources and perform the crafting process at the crafting table, resulting in the creation of the specified quantity
of the desired item, which becomes available for the player to collect.

NL Function One Sentence Summary:
The player must have access to a crafting table and sufficient resources to craft an item specified by name and
quantity.

For Experiment 2 The following are example summaries created during the Summarization Stage for the Voyager functions
CollectBlock, goTo, and placeItem.



Function Name: CollectBlock

NL Function Summary:
The collect function is a JavaScript method that simulates the action of collecting specific blocks in Minecraft. It
takes two main parameters: ‘target‘ which specifies what blocks to collect, and ‘options‘ which defines various
settings for the collection process. The function uses an asynchronous approach and returns a promise indicating
its completion or failure.

NL Goals, Preconditions & Effects Function Summary:
The goal of the ’collect’ function is to simulate the collection of specified blocks in Minecraft, allowing players
to harvest resources and items. The precondition for this action is that the player must have a pathfinder and
tool plugin enabled, as well as specify valid target blocks or an array of blocks to collect, along with optional
settings for the collection process. The effect of executing the ’collect’ function is that it will modify the player’s
inventory by adding the collected items, potentially clearing any existing targets, and emitting a signal indicating
the completion of the collection task.

NL Function One Sentence Summary:
The collect action requires a JavaScript environment and a player with access to a Minecraft game to execute.
If these preconditions are met, the function will simulate collecting specified blocks, using an asynchronous
approach, and return a promise indicating its completion or failure.

Function Name: goTo

NL Function Summary:
Here is a summary of the ‘error‘ function: The ‘error‘ function creates an error object with a given name
and message, then returns it. It is used to represent errors that occur during execution of a goal in Minecraft.
The function is designed to be reusable and flexible, allowing for customization of error messages and names
depending on the specific situation.

NL Goals, Preconditions & Effects Function Summary:
The goal of the ’goto’ function is to allow a player to execute a goal and run a callback when that goal is reached,
while handling potential errors and cleanup operations. The precondition for this action is that the player must
be able to set a goal using a pathfinder, and there must be no obstacles or conflicts preventing the execution of
the goal. The effect of this action is that if the goal is successfully executed, the callback will run and any error
messages or events triggered during the execution process will be handled, otherwise the error will be rejected
and an error message will be displayed to the player.

NL Function One Sentence Summary:
The ‘error‘ function requires a given name and message to create an error object. If these preconditions are met,
it returns the error object for representing errors during goal execution in Minecraft.



Function Name: placeItem

NL Function Summary:
The ‘placeItem‘ function is a JavaScript function that allows a player to place an item at a specified position in
the Minecraft game world. It takes three parameters: a bot object, the name of the item to be placed, and the
position where it should be placed. The function first finds the item in the bot’s inventory and then determines
the direction it should be placed based on the surrounding blocks. Once the direction is determined, the function
navigates the bot to the placement position, equips the item for placing, and then places the item at the specified
position.

NL Goals, Preconditions & Effects Function Summary:
The goal of the ’placeItem’ function is to allow a player to place an item at a specified position in the Minecraft
game world. The precondition of the ’placeItem’ function is that the player must have the required item in their
inventory, and there must be a solid block in the surrounding area that determines the direction of placement.
The effect of the ’placeItem’ function is that it changes the state of the game world by placing the item at the
specified position, and also updates the player’s inventory by removing the used item.

NL Function One Sentence Summary:
The player must have the item they want to place in their inventory for this function to work. If the item is
available, it will be placed at the specified position and direction based on surrounding blocks.

C.4 NL Domain Background Information

Natural language domain background information is provided to Prompts P3, P4, and P5, which are respectively used to select
the types, select the predicates, and generate the action for a particular function.

For Experiment 1 The following are the four user-provided NL Domain Background Information texts corresponding to
each item for which a craftItem action was generated.

• Crafting Table: The precondition for this action is the player must have 4 individual planks. The effect of this
action is the player has one craft table.

• Wooden Planks: Any four matching wood blocks produce four individual planks. The precondition of this
action is the player must have four individual wood blocks. The effect of this action is the player has four
individual planks. No crafting table is needed to execute this action.

• Sticks: Any two wood planks produce four individual sticks. The precondition of this action is the player must
have two individual planks. The effect of this action is the player has four individual sticks. No crafting table
is needed to execute this action.

• Wooden Sword: Two planks of any kind and one stick produce a wooden sword. The precondition of this
action is the player must have two planks and one stick. The effect of this is the player has a wooden sword.
The player must have a crafting table to execute this action.

For Experiment 2 The previously shown user-provided craftItem NL Domain Background information was given, along
with text corresponding to moving, collecting and placing an item in Minecraft.



• Moving a Player: This action moves a player from their current location to a new location where an object
is located at.The precondition for this action is the location the player is currently located at must be different
from the location the player wants to move to where an object is located at, and the grid squares the player
is moving between to accomplish this must be connected. The effect of this action is the player is located at
a new location where an object is at, an object is located at the location the player is at, and the player is no
longer at the location they originally moved from.

• Collecting an Item: This action allows a player to collect a single object located at some location, so they
have it. The precondition of this action is the player must be in the exact same location as the object they want
to collect is. The effect of this action is the player has the object in their inventory, and the object they have
collected is no longer located at some location.

• Placing an Item: This action allows a player to place a single object they have in their inventory at some
location. The precondition for this action is the player must have the object in their inventory and the location
they want to place it in can’t be the location of a completely different object. The effect of this action is the
single object the player placed is now at some location and the player no longer has the single object they
placed in their inventory.

C.5 Extraction Stage: Example ‘Select Types’ Prompt

Here we give an example of prompt P3, which presents Codestral with a list of user-provided types and asks it to choose the
ones it thinks are needed to construct a given action. This prompt is constructed using the summary information from prompts
P1 and P2, user-provided objects types hierarchy, and the NL domain background information. The example prompt we present
is for the craftSticks action.

The recipe to craft sticks in Minecraft is: any two wood planks produce four individual sticks. The precondition
of this action is the player must have two individual planks. The effect of this action is the player has four
individual sticks. No crafting table is needed to execute this action.

If you were asked to create a simple PDDL craftSticks action, which of these types would you need?

The types you can choose from are: player, craftTable, plankBlock, woodBlock, stickItem, woodenSword, wood-
enPickaxe, gridSquare and some object. Here, craftTable, plankBlock, woodBlock, stickItem, woodenSword,
and woodenPickaxe are all child types of the parent type some object (i.e. plankBlock woodBlock stickItem
woodenSword woodenPickaxe - some object).

Base the types you select on the following summary of a generic Minecraft action: The player must have access
to a crafting table and sufficient resources to craft an item specified by name and quantity. The goal of the
craftItem function is to enable a player to create a specific item in Minecraft by using a set of resources and
a crafting table, allowing them to acquire the desired quantity of the item. The precondition of the craftItem
function is that there must be a crafting table present in the game world for the player to use, as well as sufficient
resources available to craft the item, and that the player has access to these resources and can navigate to the
crafting table. The effect of the craftItem function is that it will gather the necessary resources and perform the
crafting process at the crafting table, resulting in the creation of the specified quantity of the desired item, which
becomes available for the player to collect.

Provide your answer within one contiguous code block surrounded by “‘ symbols. Include only your choice of
types, with no other words or code. For example, if the types you selected were animal and bug, you would
answer as “‘animal, bug“‘. Only include the types you absolutely need for this action.

The prompt is generalizable to other domains with the following template:



{NL domain background info}

If you were asked to create a simple PDDL {action name} action, which of these types would you need?

The types you can choose from are: {object types hierarchy}

Base the types you select on the following summary of a generic Minecraft action: {action summary}

Provide your answer within one contiguous code block surrounded by “‘ symbols. Include only your choice of
types, with no other words or code. For example, if the types you selected were animal and bug, you would
answer as “‘animal, bug“‘. Only include the types you absolutely need for this action.

C.6 Extraction Stage: Example ‘Select Predicates’ Prompt

Here we give an example of prompt P4, which presents Codestral with a list of user-provided predicates and asks it to choose
the ones it thinks are needed to construct a given action. This prompt is constructed using the summary information from
prompts P1 and P2, user-provided predicate pool, and the NL domain background information. We again present an example
prompt for the craftSticks action.

If you were asked to create a simple PDDL craftSticks action, what predicates from this list would you need?:

(agent located at ?agent - player ?square - gridSquare)
(object located at ?item - some object ?square - gridSquare)
(connected ?current position - gridSquare ?next position - gridSquare)
(HasWoodBlock ?agent - player ?wood - woodBlock)
(HasPlankBlock ?agent - player ?plank - plankBlock)
(HasStickItem ?agent - player ?stick - stickItem)
(HasWoodenSword ?agent - player ?sword - woodenSword)
(HasWoodenPickaxe ?agent - player ?pickaxe - woodenPickaxe)
(HasCraftTable ?agent - player ?table - craftTable)

The recipe to craft sticks in Minecraft is: any two wood planks produce four individual sticks. The precondition
of this action is the player must have two individual planks. The effect of this action is the player has four
individual sticks. No crafting table is needed to execute this action.

Base the predicates you select on the following summary of a generic Minecraft action: The player must have
access to a crafting table and sufficient resources to craft an item specified by name and quantity. The goal of
the craftItem function is to enable a player to create a specific item in Minecraft by using a set of resources and
a crafting table, allowing them to acquire the desired quantity of the item. The precondition of the craftItem
function is that there must be a crafting table present in the game world for the player to use, as well as sufficient
resources available to craft the item, and that the player has access to these resources and can navigate to the
crafting table. The effect of the craftItem function is that it will gather the necessary resources and perform the
crafting process at the crafting table, resulting in the creation of the specified quantity of the desired item, which
becomes available for the player to collect.

Don’t repeat predicates or change the predicates I have given you in any way. You must follow this rule. For
example, if the predicates you selected were (IsMammal ?someanimal - animal) and (IsInsect ?somebug - bug)
from the list (IsMammal ?someanimal - animal) (IsInsect ?somebug - bug) (IsPlant ?someplant - plant), you
would answer as “‘(IsMammal ?someanimal - animal), (IsInsect ?somebug - bug)“‘, where each predicate only
appears a single time and has not been changed. For example, (IsMammal ?someanimal - animal) did not become
(IsMammal ?someanimal1 - animal) and (IsMammal ?someanimal2 - animal). Provide the predicates you selected
within one contiguous code block surrounded by “‘ symbols. Include only the predicates, with no other words or
code.”’

The prompt is generalizable to other domains with the following template:



If you were asked to create a simple PDDL {action name} action, what predicates from this list would you
need?:

{predicate pool}

The recipe to action description based on name in domain is: {NL domain background info}

Base the predicates you select on the following summary of a generic domain action: {action summary}

Don’t repeat predicates or change the predicates I have given you in any way. You must follow this rule. For
example, if the predicates you selected were (IsMammal ?someanimal - animal) and (IsInsect ?somebug - bug)
from the list (IsMammal ?someanimal - animal) (IsInsect ?somebug - bug) (IsPlant ?someplant - plant), you
would answer as “‘(IsMammal ?someanimal - animal), (IsInsect ?somebug - bug)“‘, where each predicate only
appears a single time and has not been changed. For example, (IsMammal ?someanimal - animal) did not become
(IsMammal ?someanimal1 - animal) and (IsMammal ?someanimal2 - animal). Provide the predicates you selected
within one contiguous code block surrounded by “‘ symbols. Include only the predicates, with no other words or
code.”’

C.7 Extraction Stage: Action-Construction Prompt
The final Extraction Stage prompt P5 is constructed using the summary information from prompts P1 and P2, selected types and
predicates from prompts P4 and P5 and the user-provided NL domain background information. This prompt instructs Codestral
to produce a valid PDDL action. We show an example of this prompt for the craftSticks action.

You are a helpful assistant that is an expert in writing PDDL actions. Your task is to write a PDDL action for
crafting sticks in Minecraft.

Base the action you create on the following summary of a generic Minecraft action: The player must have
access to a crafting table and sufficient resources to craft an item specified by name and quantity. The goal of
the craftItem function is to enable a player to create a specific item in Minecraft by using a set of resources and
a crafting table, allowing them to acquire the desired quantity of the item. The precondition of the craftItem
function is that there must be a crafting table present in the game world for the player to use, as well as sufficient
resources available to craft the item, and that the player has access to these resources and can navigate to the
crafting table. The effect of the craftItem function is that it will gather the necessary resources and perform the
crafting process at the crafting table, resulting in the creation of the specified quantity of the desired item, which
becomes available for the player to collect.

The recipe to craft sticks in Minecraft is: any two wood planks produce four individual sticks. The precondition
of this action is the player must have two individual planks. The effect of this action is the player has four
individual sticks. No crafting table is needed to execute this action.

Make this action using the Minecraft recipe, and the following types and predicates:

Types: {types LLM selected in prompt #3}
Predicates: {predicates LLM selected in prompt #4}

And follow these rules:

1) All precondition fluents containing objects inside your action must be unique. For example, if (DolphinPod
?dolphin1) and (DolphinPod ?dolphin2) are part of your action’s precondition, ?dolphin1 and ?dolphin2 must be
distinct objects (i.e. (DolphinPod ?dolphin1) and (DolphinPod ?dolphin2) ). Use a not-equal constraint to ensure
parameters like this are distinct. This is expressed in PDDL as (not (= ?var1 ?var2)) which ensures that ?var1 and
?var2 are not the same.

2) You are only allowed to use the types and predicates I have given you.

3) Your response should be a single PDDL action. Provide your action within one contiguous code block sur-
rounded by “‘ symbols. Include only the PDDL action, with no other words or code.”’



To fully generalize the prompt, the word ‘recipe’ in the sentence ‘Make this action using the Minecraft recipe, and the follow-
ing types and predicates’ would need to be replaced with something more generic, e.g., “domain background information”.
Additionally, ‘crafting sticks’ would need to be replaced by the action name or a phrasal description could be generated by
an LLM based on the action name. Otherwise, the prompt is mostly generalizable to other domains with the following template:

You are a helpful assistant that is an expert in writing PDDL actions. Your task is to write a PDDL action for
{short phrasal action description based on action name} in {domain}.

Base the action you create on the following summary of a generic {domain} action: {action summary}

{NL domain background info}

Make this action using the {domain} recipe, and the following types and predicates:

Types: {types LLM selected in prompt #3}
Predicates: {predicates LLM selected in prompt #4}

And follow these rules:

1) All precondition fluents containing objects inside your action must be unique. For example, if (DolphinPod
?dolphin1) and (DolphinPod ?dolphin2) are part of your action’s precondition, ?dolphin1 and ?dolphin2 must be
distinct objects (i.e. (DolphinPod ?dolphin1) and (DolphinPod ?dolphin2) ). Use a not-equal constraint to ensure
parameters like this are distinct. This is expressed in PDDL as (not (= ?var1 ?var2)) which ensures that ?var1 and
?var2 are not the same.

2) You are only allowed to use the types and predicates I have given you.

3) Your response should be a single PDDL action. Provide your action within one contiguous code block sur-
rounded by “‘ symbols. Include only the PDDL action, with no other words or code.”’


