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Abstract
One of the most difficult challenges in creating successful
human-AI collaborations is aligning a robot’s behavior with
a human user’s expectations. When this fails to occur, a robot
may misinterpret their specified goals, prompting it to per-
form actions with unanticipated, potentially dangerous side
effects. To avoid this, we propose a new metric we call Goal
State Divergence (GSD), which represents the difference be-
tween a robot’s final goal state and the one a human user ex-
pected. In cases where GSD cannot be directly calculated, we
show how it can be approximated using maximal and minimal
bounds. We then input the GSD value into our novel human-
robot goal alignment (HRGA) design problem, which identi-
fies a minimal set of environment modifications that can pre-
vent mismatches like this. To show the effectiveness of GSD
for reducing differences between human-robot goal states, we
empirically evaluate our approach on several standard bench-
marks.

Introduction
As Artificial Intelligence (AI) continues to advance and be-
come a more ubiquitous part of society, human-robot inter-
actions are becoming increasingly common. As a result, de-
signing robots that exhibit behavior that conforms to human
expectations is becoming more important than ever. Previ-
ous work (cf. (Zhang et al. 2017; Chakraborti et al. 2017))
has shown how addressing expectation mismatches lies at
the heart of many human-AI interaction problems. In this
paper, we will look at problems that might arise when there
are differences between the potential goal states a human
user expects a robot to achieve and those it might achieve.

Specifically, when the user provides a goal specification,
they would have some expectation of the exact goal states
that might satisfy them. However, the behavior the robot
may choose in response to such a goal specification may re-
sult in a state that differs significantly from what the user
expected in the characteristics not strictly provided in their
specification. This in turn may result in unanticipated side
effects, which in severe cases, could threaten human safety.
Such expectation mismatches may arise for diverse reasons,
including the human user misunderstanding the robot’s state
and capabilities or even limitations in their inferential capa-
bilities. In this paper, we explore how environment design
(Zhang and Parkes 2008) can be used to avoid such poten-
tial expectation mismatches. In particular, we look for ways

to modify the environment to ensure that the difference be-
tween what the human user expects the robot to achieve and
what the robot truly achieves is minimized for a given goal
specification. We do so by driving the design process to min-
imize a novel metric called Goal State Divergence (GSD),
which identifies the discrepancy between the final goal state
expected by the human and what can be achieved by the
robot.

However, even under generous assumptions about the
knowledge the designer has access to, estimating true GSD
presents a unique challenge because the actual human plan
may be unknown. In this paper, we instead aim to approx-
imate the magnitude of the divergence through bounds and
identify potential environmental modifications that can min-
imize it. Our paper also introduces novel classical planning-
based compilations that can identify these bounds for a given
design problem. To summarize, the primary contributions of
this paper are as follows

1. We introduce a novel metric to characterize discrepan-
cies between human-robot goal states in a given planning
problem.

2. We develop approximations of the given metric and show
how they can be effectively calculated using compila-
tions to classical planning.

3. We introduce a novel design problem that leverages these
approximations to minimize potential final goal state dis-
crepancies.

4. We present a comprehensive empirical evaluation of our
proposed method on standard benchmarks.

Related Work
Environment design shapes a robot’s actions by modifying
its environment to maximize or minimize some objective
(Zhang and Parkes 2008; Keren, Gal, and Karpas 2019).
Several early works in utilizing design in settings where the
robots correspond to planning agents have focused primarily
on using them to facilitate better goal and plan recognition
(Keren, Gal, and Karpas 2014; Mirsky et al. 2019). Many of
these works have relied primarily on heuristic search meth-
ods to identify such designs. (Keren et al. 2017a) looked
at using design to maximize robot objectives in uncertain,
stochastic environments, and (Keren et al. 2017b) leveraged



it to find the maximum shared agent-designer utility in Equi-
Reward Utility Maximizing Design (ER-UMD) settings. For
the latter, (Keren et al. 2021) extends this work by limiting
the space of possible modifications, then mapping each one
to a dominating modification. This avoids having to calcu-
late all possible modifications. In our work, we propose a
similar, method by identifying a bounded subset of modifi-
cations that meets certain criteria regarding the bounds on
GSD.

Many works have looked at approaches like value align-
ment (Hadfield-Menell et al. 2016; Mechergui and Sreed-
haran 2023) and avoiding side effects (Amodei et al. 2016;
Weld and Etzioni 1994; Leike et al. 2017; Klassen, Alam-
dari, and McIlraith 2023; Klassen et al. 2022) as a means of
ensuring safe behavior (the implicit assumption being that
any behavior that avoids a certain set of states corresponding
to the side-effect, will not cause any harm). Many of these
works either assume access to a set of locked features or
rely on directly querying the user to identify these features
(cf. (Zhang, Durfee, and Singh 2018)). Methods like those
proposed by (Saisubramanian and Zilberstein 2021) directly
ask humans to update the environment to avoid negative side
effects. Unfortunately, this method is hindered by the exten-
sive human intervention it requires. Our method avoids such
direct querying by instead relying on a specification of the
human model to select an environment modification without
requiring any further human intervention. We can learn such
models by leveraging existing work on learning human men-
tal models (cf. (Sreedharan et al. 2019)), in addition to all
the works in learning planning models, in general (Callanan
et al. 2022). Once the human domain knowledge is learned,
it can be reused for multiple tasks. Additionally, in many
cases, a set of people may share the same model, and we
don’t necessarily need to learn a unique model for each user
(Soni, Sreedharan, and Kambhampati 2021).

Another related area of research is that of explicable plan-
ning (Zhang et al. 2017; Kulkarni et al. 2019), where a robot
tries to generate plans aligned with a human’s expectations
about what plans the robot may choose. Recently, explica-
ble planning has also been used to mitigate safety issues
caused by human-AI model mismatches (Hanni, Boateng,
and Zhang 2023), where a designer-specified safety bound
is used to guarantee that an agent will never select an un-
safe behavior. Environment design has also been applied
to boost the ability of robots to generate explicable plan-
ning (cf. (Kulkarni et al. 2020)). Note that all the previously
mentioned explicable planning methods generally focus on
matching the human’s expectations about the plan as a whole
with the final plan carried out by the robot. On the other
hand, we solely concentrate on matching the robot’s final
goal state with the human’s expectations about potential fi-
nal goal states and ignore the actual plans that may be used
by the robot or expected by the human to achieve them.

Background
In this section, we define the basic planning terminologies
we will be using throughout the paper. We define a plan-
ning model using the tuple M = ⟨D, I,G⟩. Here D corre-
sponds to the domain associated with the model and is fur-

ther defined by the tuple D = ⟨F ,A⟩. F corresponds to
the set of propositional fluents that describes the state space
corresponding to the given planning problem, such that any
state s in that space can be uniquely represented by the set
of fluents that are true (i.e. s ⊆ F , for all states s). A is
a set of executable robot actions represented as the tuple
a = ⟨pre+(a), pre−(a), add(a), del(a)⟩. For each action
a ∈ A, pre+/−(a) ⊆ F are the set of positive or nega-
tive preconditions that must be satisfied before a can be ex-
ecuted, while add(a) and del(a) represent sets of add and
delete effects for each action a. c corresponds to the cost as-
sociated with each action. Finally, I is the initial state, and
G ⊆ F is the goal specification (which is a partial state spec-
ification and not necessarily a state). We define the effects of
executing an action at a given state using a transition func-
tion TM : 2F ×A → 2F , which is given by

TM(s, a) =

{
s ∪ add(a) \ del(a) if exec(s, a)
undefined otherwise

where exec(s, a) returns true if s ⊇ pre+(a) and s ̸⊇
pre−(a). We will overload the notation and use the transi-
tion function to also be applicable to action sequences, such
that TM(s, ⟨a1, ..., ak⟩) = TM(...(TM(s, a1), ......, ak)).

A solution to a planning problem is a plan, which is an
action sequence whose execution in the initial state results
in a state that satisfies the goal specification, i.e., π is a plan
if TM(I, π) ⊇ G. We will refer to a state that satisfies the
goal specification as a goal state. Each action in this plan has
a cost; summing these reveals the cost of a plan, denoted by
c(π) =

∑
ai∈π c(ai). A plan is considered optimal if there

exists no other plan with a lower cost, and we will represent
the set of optimal plans for a model M, with the notation
Π∗

M and use ΠM to denote the set of all plans.

Running Example
Consider a robot operating in a greenhouse, tasked with
completing various chores to maintain its operation. Here, a
human assigns tasks to the robot based on their beliefs about
its current state and capabilities. The robot then seeks to ac-
complish these tasks by following a plan that it believes will
achieve the specified objective. In the best-case scenario, this
plan may result in a goal state which is perfectly aligned with
what the human was expecting or just lead to a few minor in-
conveniences. However, in the worst-case scenario, the robot
could carry out a plan with potentially dangerous effects that
the human did not anticipate.

As a specific example, consider a scenario where a hu-
man asks a robot to water a section of plants, sitting un-
der a series of heat lamps. In providing this goal specifica-
tion, the human expects the robot to carefully use a watering
pail to water the plants, ensuring they remain adequately hy-
drated. Instead, the robot grabs a nearby hose and haphaz-
ardly sprays the plants, splashing water all over — includ-
ing onto the heat lamps. This sudden change in temperature
causes thermal shock, resulting in the heat lamps shattering
and releasing sparks onto the plants below. Moments later,
the plants ignite, setting the greenhouse on fire. The human
who was not aware that the robot could use hoses completely
overlooked this possibility.



To avoid situations like this, environment design can be
a useful tool for influencing a robot’s decision-making. In
the greenhouse setting, for example, the robot’s choice of
what tool to water the plants with could have been dictated
by their placement. Here, the watering pail could have been
placed closer to the robot — increasing the possibility it’d
be used — whereas the hose could have been placed farther
away or left in an inaccessible position. Additionally, the
heat lamps could have been outfitted with protective cov-
ers to ensure they remained shielded from any direct contact
with water while the plants were being cared for. Our ob-
jective through this paper will be to design algorithms that
can automatically identify such potential designs and limit
potential mismatches.

Figure 1: In a greenhouse setting, a human asks a robot to
water plants based on their incorrect beliefs about its model.
As a result, the robot follows the least costliest plan and
chooses to water the plants with a hose, causing a fire. Using
environment design, the hose is removed from the scene to
avoid potential safety issues.

Design to Reduce Goal State Divergence
As discussed, the mismatch between the human’s perception
of the robot’s capabilities/state and the reality could lead
to users misspecifying their objective, potentially resulting
in unanticipated outcomes. To develop methods that can
account for and avoid such unintended outcomes, we first
need to develop metrics to quantify the degree of mismatch.
Specifically, we will start by looking at pairs of states.
Definition 1. Given any two states, s1, s2, state divergence
(SD) is defined as the symmetric difference1 between their
respective fluents, i.e.:

SD(s1, s2) = s1∆ s2

In this paper, we are not interested in just measuring the
difference between two arbitrary states but rather the goal

1The symmetric difference between two states is the number of
elements present in either state but not both, which we denote using
∆.

state expected by the human and the goal state that the robot
can achieve. One could make the case that the intermedi-
ate states the robot passes through are as important as the
final goal state for many safety applications. However, it is
important to note that a purely goal-based specification is
general enough to account for such considerations easily.
We can introduce new fluents that track intermediate states,
and their value in the goal state can be used to account for
whether the robot visited any undesirable intermediate state.
This requires us to measure the difference in states achiev-
able across models:
Definition 2. For a pair of models that are not necessarily
distinct, M1 and M2, let π1 be a valid plan in M1, and
π2 be a valid plan in M2. Given this, goal state divergence
(GSD) of the plan-model pairs is defined as the state diver-
gence between the final state of these two plans, i.e.:
GSD(π1,M1, π2,M2) = SD(TM1(I1, π1) , TM2(I2, π2))

In our setting, these two models correspond to the robot
model MR = ⟨DR, IR,GR⟩, and the human’s model of
the robot and the task MH = ⟨DH, IH,GH⟩. We are specif-
ically looking at cases where the robot is trying to follow the
goal specification provided by the human exactly, and thus,
we have GH = GR. To simplify the notations, we will also
assume that the human and robot models share the same flu-
ent set F . Let πR be the robot plan and πH be the plan ex-
pected by the human. The central metric of interest for this
paper then becomes GSD(πH,MH, πR,MR).

Note that calculating the above difference requires the
system to have access to the human model MH and plan
πH. As discussed, there are model learning methods we
could employ to learn MH; Additionally, we will assume
that the human’s model is given because under many struc-
tured settings, the human model may be known beforehand.
In the greenhouse case, if the human has been working with
a previous model of the robot, their beliefs about the robot
would be heavily influenced by the model’s capabilities.

It is worth noting that access to a human model doesn’t
mean that the robot could potentially avoid goal state di-
vergence by executing plans that are valid in both models
since such a plan might not exist. Coming to πH, even with
a known MH, the exact plan the human chooses may not
be known beforehand because multiple plans may satisfy a
goal state, any of which the human could choose.

In cases in which it is not possible to compute GSD ex-
actly, we will instead consider approximations. The first ap-
proximation we will consider is the worst-case approxima-
tion, where we will look at the maximum divergence pos-
sible between an expected human goal state and what the
robot can achieve, more formally,
Definition 3. For two given models, M1, M2, the worst-
case or maximal goal state divergence (GD↑) is given by the
cardinality of the maximum goal state divergence possible
between all executable plans in M1, ΠM1 , and M2, i.e.:
GD↑(M1,M2) = max

π1∈ΠM1 ,π2∈ΠM2

(|GSD(π1,M1, π2,M2)|)

This brings us to our first proposition which states that
GD↑ is guaranteed to be an upper bound of the true goal
state divergence.



Proposition 1. For the robot and human model pair MR

and MH, the maximal goal state divergence is guaran-
teed to be greater than or equal to the goal state diver-
gence for the human plan πH and the robot plan πR, i.e.,
GD↑(MH,MR) ≥ |GSD(πH,MH, πR,MR)|.

The validity of the above proposition can be trivially
proven from the definition of GD↑. From the proposition,
we can assert that one way to reduce goal state divergence
is to reduce GD↑. Especially, if we can reduce GD↑ to zero,
we are guaranteed that GSD, will be an empty set.

However, GD↑ could be a loose upper bound, and reduc-
ing GD↑ will not necessarily always reduce GSD. Another
approximation we could use is the lower bound on GSD.
We define this measure similar to GD↑, but now focusing on
minimizing the divergence.
Definition 4. For two given models, M1, M2, the best-case
or minimal goal state divergence (GD↓) is given by the car-
dinality of the minimum goal state divergence possible be-
tween all executable plans in M1, ΠM1 , and M2, i.e.:

GD↓(M1,M2) = min
π1∈ΠM1 ,π2∈ΠM2

(|GSD(π1,M1, π2,M2)|)

Similar to Proposition 1, we can assert that GD↓ provides
a lower bound.
Proposition 2. For the robot and human model pair MR

and MH, the minimal goal state divergence is guaran-
teed to be less than or equal to the goal state diver-
gence for the human plan πH and the robot plan πR, i.e.,
GD↓(MH,MR) ≤ |GSD(πH,MH, πR,MR)|.

We can characterize our unknown GSD, using this up-
per bound, lower bound, and the gap between the two (i.e.,
GD↑(MH,MR)− GD↓(MH,MR)).

Now with the basic setting and metrics in place, we are
ready to finally define the design problem:
Definition 5. A human-robot goal-state alignment
(HRGA) design problem is characterized by the tuple,
DP = ⟨MR,MH,U,Λ, C⟩, where:

• MR, MH, are the initial robot and human models.
• U is a set of available environment modifications or

model updates. These may include changes to the state
space, action preconditions, action effects, action costs,
initial state, or goal.

• Λ : M × U → M is the transition function over a space
of possible models. The function generates the model that
would be obtained by performing the set of modifications
on a given model.

• C is an additive cost function that maps each design mod-
ification in U to a cost.

In the running example, model designs (we use the term
design and environment modification interchangeably) may
include moving objects like the watering pail or hose around
the environment or removing them completely.

One could define various classes of solutions based on the
metrics we have described above. The most basic one aims
to minimize the design cost while requiring the lower bound
and upper bound to fall below a specific threshold.

Definition 6. A (l, k)-bounded minimal solution to a DP
is the cheapest subset of modifications2 ξ that satisfies the
following conditions:

ξ∗ = argmin
ξ∈2U

C(ξ)

Such that GD↓(MR
ξ ,MH

ξ ) ≤ ℓ and GD↑(MR
ξ ,MH

ξ ) ≤ k

Where MR
ξ = Λ(MR, ξ) and MH

ξ = Λ(MH, ξ)

Though we focus on a single instance problem setting
(i.e., design for a unique goal specification for an initial
state), one could easily envision settings where the robot
may be required to carry out a number of different tasks,
each corresponding to a different goal specification. In such
cases, the above definition can easily be extended to account
for the multi-task nature of the setting. In particular, we can
consider the max, min, or average of the GD↑ and GD↓ val-
ues across instances. The specific variation that may be used
might depend on the nature of the setting. For example, if
one were to create designs to account for the worst possible
case across all instances, one would want to make sure that
the max of GD↑ and GD↓ values across the instances fall
below specific thresholds.

It is worth noting that the above definitions for the bounds
consider a much larger set of plans than required. While the
definitions consider all possible plans, humans may never
consider most of those plans. For example, they might not
think the robot would follow an extremely suboptimal plan.
This will result in weaker bounds, which could result in
more extensive model updates than required. In the running
example discussed above, regardless of where you place the
hose, there will always be a plan where the robot could go
fetch the hose and spray the plants. Thus, if one were to
make changes to the model based purely on these metrics,
only removing the hose completely from the setting would
result in a setting where the use of the hose is not considered
part of one of the possible outcomes.

Calculating GD↑ and GD↓

The first order of business for us would be to calculate the
approximations of GSD, in particular, we will show how
one could employ an off-the-shelf cost-optimal planner to
calculate these values. The general idea we will employ is
the fact that we will create a single planning problem which
involves coming up with actions in the robot model and hu-
man model, and then finally having a set of check actions
that check how the goal state is achieved under the human
plan and model compared against the one achieved under the
robot plan and model.

More formally, given the model pair λ = ⟨MR,MH⟩,
we create a new compiled model such that Mλ =
⟨Dλ, Iλ,Gλ⟩ where Dλ is the domain, defined by the tu-
ple Dλ = ⟨Fλ,Aλ⟩. Here, Fλ is a set of fluents represented
by Fλ = FR ∪ FH ∪ Fθ ∪ Fκ, where FR is the origi-
nal set of fluents, and FH is a copy of these fluents which

2Note that this definition makes an implicit assumption that
each design is independent and as such can be performed in any
order.



correspond to the human’s beliefs. We will use these copies
to keep track of how the plan will unfold according to the
human model and will use the notation fH

i to denote the
human copy of a fluent fR

i ∈ FR. Fθ includes the house-
keeping fluents robot can act and human can act which
control when a human or robot can perform actions, and Fκ

are a set of compare fluents. Fκ contains a compare fluent
for every fluent in FR, i.e., ∃fκ

i ∈ Fκ, for every fR
i ∈ FR.

As discussed, our eventual objective is to compare the resul-
tant goal states of the robot plan and a plan expected by the
human. These compare fluents will allow us to track whether
such comparisons have been performed.

Iλ is an initial state denoted by Iλ = ⟨IR ∪ IH ∪
{human can act}⟩, where IR is the robot’s initial state,
and IH is a copy of this state, representative of the hu-
man’s initial beliefs. The inclusion of {human can act},
ensures that the plan can start with human actions. Gλ is
the set of goals shared by the human and robot, denoted by
Gλ = ⟨GR∪GH∪Fκ⟩. Here, GR ⊆ FR is the goal specified
in the original fluent set, and GH ⊆ FH the same goal ex-
pressed in the human fluent copy, while Fκ are the original
compare fluents, used to determine how similar the human
and robot’s final goal states are, once all goals have been
achieved.

Aλ is a set of actions represented by Aλ = ⟨AR′ ∪
AH′ ∪ Aθ ∪ Aκ⟩. Here, AR′

is the action set correspond-
ing to the robot actions AR. Here the action definitions
are identical to their definitions in AR, except that for any
a ∈ AR′

, you have robot can act ∈ pre(a). Similarly, AH′

is a copy of these actions corresponding to the human’s be-
liefs of them (i.e., corresponds to their definitions in AH)
expressed in FH. Additionally, for any a ∈ AH′

, you have
human can act ∈ pre(a).

Aθ are the special flip actions aRflip and aHflip which en-
able or disables a human or robot’s ability to perform ac-
tions by changing the state of the Fθ fluents. In our set-
ting, the human begins with the ability to perform actions,
while the robot does not. Once the human’s goals have been
achieved, their ability to perform actions is terminated, while
the robot’s are enabled. We define this specific human flip
action, pre+(a

H
flip), as follows:

• pre+(a
H
flip)/{human can act} ⊆ GH,

pre−(a
H
flip) = ∅:

add (aHflip) = {robot can act},
del (aHflip) = {human can act}

Once the robot has achieved all of its goals, its ability to
perform actions is disabled using the action aRflip. We can
define aRflip similar to the aHflip. These two actions ensure
that the planner has identified a valid human and robot plan
before performing all the check actions.

Once the human and robot have both executed their plans,
all fluent sets from their final goal states are compared, for
which one check fluent action exists for each fluent in FR.
Aκ is a set of compare actions that check for this consistency
and is denoted by Aκ = Aκ

f1
∪Aκ

f2
∪Aκ

f3
...Aκ

f|F|
, such that

the set Aκ
fi

= {a1fi , a
2
fi
, a3fi , a

4
fi
} exists for each fR

i ∈ FR.

We will call the first two copies the check disagreement ac-
tions for fact fi and the latter two the check agreement ac-
tions. The agreement copies will only fire if the human’s
belief about the fluent value matches the robot’s, and the dis-
agreement copy fires only in case they don’t. Additionally,
we will modulate the cost parameters P1 (agreement action
cost) and P2 (disagreement action cost) to get different be-
haviors from the compilation. These are defined as follows:
• pre+(a

1
fi
) = {fR

i },
pre−(a

1
fi
) = {fH

i } ∪ {robot can act} ∪
{human can act} ∪ {fκ

i },
add (a1fi) = {fκ

i }, del (a1fi) = ∅, and c(a1fi) = P1

• pre+(a
2
fi
) = {fH

i },
pre−(a

2
fi
) = {fR

i } ∪ {robot can act} ∪
{human can act} ∪ {fκ

i },
add (a2fi) = {fκ

i }, del (a2fi) = ∅, and c(a2fi) = P1

• pre+(a
3
fi
) = {fR

i , fH
i },

pre−(a
3
fi
) = {robot can act} ∪ {human can act} ∪

{fκ
i },

add (a3fi) = {fκ
i }, del (a3fi) = ∅, and c(a3fi) = P2

• pre+(a
4
fi
) = ∅,

pre−(a
4
fi
) = {fR

i , fH
i } ∪ {robot can act} ∪

{human can act} ∪ {fκ
i },

add (a4fi) = {fκ
i }, del (a4fi) = ∅, and c(a4fi) = P2

For a plan πλ that is valid for this new model Mλ, we will
use the notation H(πλ) to represent the sequence of human
actions that appear in πλ, and R(πλ) to represent the robot
actions. Also, we will use the notation κ+(πλ) and κ−(πλ),
to list the set of check agreement and check disagreement
actions that appear in the plan.

One of the aspects of the model definition we haven’t
delved into is the action costs of the different actions. As
we will see setting these costs to different values allows us
to determine the values we are interested in. In general, we
will assume that the cost of all actions in Aθ are zero.
Proposition 3. For a given compiled model Mλ, let us set
the action costs of all actions in AR′ ∪ AH′

to a unit cost,
and set the disagreement cost as P2 = 0 and agreement cost
as P1 > 2|F

R|+|FH|. For the given cost function, let πλ be
an optimal plan, then GD↑(MR,MH) = |κ−(πλ)|.

Proof. Now this comes from the fact that the cost of the plan
is being dominated by check agreement actions. In particu-
lar, the cost of a single agreement action is higher than the
combined cost of the longest possible plan in either the hu-
man or robot model (i.e., one that passes through each pos-
sible state). By setting the cost of agreement so high, we
force the planner to select plans with a low degree of agree-
ment.

We can similarly calculate the GD↓(MR,MH), by in-
verting the costs, specifically:
Proposition 4. For a given compiled model Mλ, let us set
the action costs of all actions in AR′ ∪ AH′

to a unit cost,
and set the agreement cost as P1 = 0 and disagreement cost



as P2 > 2|F
R|+|FH|. For the given cost function, let πλ be

an optimal plan, then GD↓(MR,MH) = |κ−(πλ)|.
The proof is identical to the previous proposition.

Remark One of the additional constraints we are placing
on solutions to this problem is the requirement that human
actions be performed before any robot actions. This is tech-
nically not a requirement for the validity of the compila-
tion. If we had added {robot can act} to the initial state,
the compilation will allow for human and robot actions to
be interleaved or picked in any order. We will refer to this
version as the flattened version of the compilation. Flatten-
ing the compilation will allow for more solutions but at the
cost of increasing the branching factor. One of the evalua-
tions, we will perform is whether the two versions have any
significant difference in computational characteristics.

Identifying Minimal Designs for HRGA
Now that we have methods for computing the GD↑ and GD↓

bounds, the question remains as to how to select the designs
that will allow us to create models with the required proper-
ties for a given HRGA DP . In particular, we are interested
in identifying designs that meet the requirements laid out in
Definition 6. However, rather than laying out the most gen-
eral version, we will look at a specific instantiation of the
definition that will allow us to use an even more efficient
compilation than the version laid out in the previous sec-
tion. In particular, we are interested in settings, where ℓ = 0
(the limit on the lower bound) and the set of design changes
provided as input, correspond to adding or removing unique
fluents from the human/robot initial states and each design
has a unit cost.

Here, we only allow initial state changes because, for
most practical problem settings, initial state changes are the
easiest changes the designer could make. From a theoretical
point of view, one could always map changes to any other
model component into an initial state change. For example,
by making them conditioned on a static predicate, whose
value is determined in the initial state.

The basic algorithm will have two loops, the outer loop
will iteratively increase the allowed design cost. The inner
loop will try to identify a design for the given budget con-
straint that will meet the requirement of GD↓ of zero, and
GD↑ within some specified limit.

Inner Loop for Identifying Designs
In the inner loop, we will follow a slightly modified version
of GD↓ to identify the design itself. For a set of possible de-
signs U, we can map each design to a specific addition or
removal to the initial state for the human and robot model.
Let τ be the current limit placed on the design size. The
basic intuition here is that we will modify the GD↓ compila-
tion to first perform a set of actions corresponding to design
changes. The design actions are disabled to calculate the hu-
man and robot plan that results in GD↓ with 0. We can di-
rectly encode this into the goal by looking for plans where
all the fluent values match. We check whether the identi-
fied design allows the required k bound on the GD↑. If not,

Algorithm 1: An algorithm for a HRGA design problem

1: Input: DP, k
2: Output: Model update set U ⊆ U that satisfy the requirements

that for resulting models GD↓ is zero and GD↑ is k
3: for τ in 1 ... |FR| do
4: all designs found← False
5: found designs← {}
6: while all designs found is false do
7: Mλ

U ← GD↓ with Design(MR,MH, τ
, found designs)

8: πλ
U ← GetP lan(Mλ

U)
9: if πλ

U length is 0 then
10: all designs found← True
11: else
12: Extract model updates U from πλ

U and add it to
found designs

13: if GD↑(Λ(MR,U),Λ(MH,U)) is k then
14: return U
15: end if
16: end if
17: end while
18: end for

we look for another design with τ length which satisfies the
GD↓ = 0 requirement. We do this by updating the GD↓

compilation to disallow previously identified designs.
We will extend our previous compiled model as follows,

Mλ to Mλ
U = ⟨Dλ

U, Iλ
U ,Gλ

U ∪ {unseen design}⟩ where
Dλ

U = ⟨Fλ
U ,Aλ

U, c
λ
U⟩. In this new model, we have Fλ

U =
⟨Fλ∪{design allowed}∪{unseen design}∪Fτ∪Fτ+∪
FD⟩. Where {design allowed} is used to keep track of
when designs are allowed and {unseen design} ensures
that the current design used hasn’t been used before. The
fluent sets Fτ and Fτ+ ensures only τ designs can be per-
formed. Finally, |FD| = |U| keeps track of what exact de-
signs were used.

For the actions we have, Aλ
U = ⟨Aλ ∪ AU \ Aκ− ∪

{design completed}⟩. Where |AU| = τ × |U|, is the
set of actions you have for the design, and Aκ− is the
subset of check disagreement copies. Each design ac-
tion updates the initial state per the design requirements.
{design completed} stops the design phase and allows the
human and robot actions to be applied (from there on out,
the actions are the same as the previous compilation). By not
including the disagreement copy, we will look for robot/hu-
man plan pairs that can only satisfy the original check goal
by using agreement actions (hence, the states need to match).

The new initial state is given as Iλ
U = (Iλ \

{human can act})∪{unseen design, design allowed}∪
Fτ . Therefore, you can only start with design steps (which
can be performed at most k steps).

For the new design action, there exists an action for
each possible design step (upper-bounded by k) and a
design. For a design related to fluent f and step i, the
positive precondition of the action would be pre+(a) =
{design allowed, ki}. If the design corresponds to making
an initial state true, that fluent is part of the add effect, if
makes a fluent false it becomes part of the delete effect.



The action will always remove ti ∈ Fτ and add t+i ∈
Fτ+ as well as the corresponding design. Now the goal is
given as Gλ

U = ⟨Gλ ∪ Fτ+⟩. The {design completed} ac-
tion simply deletes {design allowed} and adds the fluent
{human can act}. Now the addition of Fτ+ means that
τ design needs to be applied. The cost function is kept the
same as Mλ. A solution to this problem allows us to iden-
tify designs that result in zero GD↓ automatically, and we
can subsequently check GD↑. If GD↑ requirements are met,
we know that this corresponds to the minimal cost design,
and the solution is returned.

If this is not the case, we would want to disallow it and
look for other designs of size τ that might suit our require-
ments. We will do this by introducing new conditional ef-
fects into the {design completed} action, such that the con-
dition for that effect corresponds to the design fluents of a
previously identified design and the effect is to delete the
{design completed} fluent.

Once the updated Mλ
U no longer returns a solution, we

know that no other minimal designs of that budget satisfy
this requirement and the control is passed to the outer loop
for checking a larger design budget. Algorithm 1 provides
a pseudo-code for this algorithm. found designs is a set
that is used to track all the previously found designs for the
current design budget, and all designs found is a flag that
captures whether the algorithm has exhausted the space of
all designs that can ensure a GD↓ of zero.

Evaluation
Our empirical evaluation objective was to provide a compu-
tational characterization of the different approaches to com-
puting GD↑ and GD↓ measures and to perform designs that
were introduced in this paper.

Dataset We looked at five standard IPC domains (IPC
2016a,b), and converted five problem instances from each
into variations of a goal state divergence problem. To help
minimize our problem run-time and potential planner issues,
instances with smaller initial states were chosen.

To create the human and robot models, these instances
were first duplicated. For each instance, five problem varia-
tions containing human and robot models were then created.
All original robot problem instances were kept the same as
the original IPC problem instance. We created the human
problem instance by deleting five random initial state fluents
from the initial state of the original instance. This means
five problem variations for each problem instance for each
domain were created, for a total of 25 problem variations
created per domain. All values listed in the table are aver-
aged across these five randomly generated problem varia-
tions. This ensured that there was always a design set of size
five within the required GD↑ and GD↓ limits. We also re-
moved the zoom action from Zenotravel to avoid large vari-
ations in the fuel level fluents.

For consistency, we considered an GD↑ limit of 0 as well.
This allowed us to frame the calculation GD↑ for the prob-
lem as checking whether the GD↑ compilation is unsolvable
if we force the plan to have at least one disagreement action.

This allows us to perform cross-domain comparisons while
keeping the GD↑ constant and also avoid the use of costlier
cost-optimal planners.

To guarantee that we had problems with the required GD↑

limit, we updated the goal specification of the problem in-
stances selected from previous IPC competitions so all plans
would result in the same goal state.

Setup We implemented the compilations for individually
computing baselines of GD↑ and GD↓ as well as the updated
GD↓ compilation that also identifies the design. We also im-
plement a simple breadth-first search over the design space
for the baseline.

For design, our primary points of comparison will be our
proposed algorithm (referred to as Main) and a naive one
(Naive) that merely iterates over all possible designs and
tests whether the designs result in zero upper and lower
bounds. We will also consider a variation of the Main that
considers the flattened compilation (Main-fl).

For each of these primary design algorithms (i.e., Main,
Main-fl, and Naive), the time listed is the total time
taken to find the minimal design that will ensure the upper
and lower bounds are zero. As such, this involves solving
for upper and lower bounds multiple times. Conversely, the
times listed for GD↑, GD↓, and GD↓ with design is the av-
erage time taken to compute each of these bounds individu-
ally (with ordering constraints enforced). To the best of our
knowledge, we are the first to tackle this problem, and we
are unaware of any existing baselines to compare this work
against. Thus, we only consider baselines that provide the
minimal design for the target upper and lower bounds but
with potentially different computational overheads (we have
also provided a characterization of the hardness of calculat-
ing these bounds).

For each domain, we tested the three conditions on each
instance, and we used Lama (Richter and Westphal 2010) for
solving all compilations. All experiments were performed
on a computer with an Apple M2 Max chip and 64 GB Ram.
All experiments were run with a time limit of 60 minutes.

Results Our primary metric is the time taken by each ap-
proach. Accordingly, Table 1 presents the average and stan-
dard deviation time in seconds taken per each instance re-
ported. Across all problems, we see that our Main and
Main-fl methods take a significantly much shorter
time than the baseline. For, Main and Main-fl were
mostly comparable, with small variation between instances.
As such, we see that enforcing the ordering does provide a
small improvement over the flattened compilation. Presum-
ably, this is due to the fact that adding the additional struc-
ture would reduce the branching factor. Also, compared with
the naive baseline, which does not leverage planning to iden-
tify the design, takes a significantly shorter time. We note
that the most noticeable benefit is for the Depot domain. We
also note that the addition of design into GD↓ compilation
adds minimal overhead. Finally, the GD↑ times are, in gen-
eral, higher than GD↓ times. However, this is expected since,
in this setting, GD↑ corresponds to testing for unsolvability.



Domain Main Main-fl Naive GD↓ GD↓ with Design GD↑

Blocksworld

73.849 ± 2.150 73.172 ± 2.281 387.178 ± 6.724 11.703 ± 1.264 12.955 ± 0.469 12.642 ± 1.461
71.966 ± 3.183 74.115 ± 3.570 386.627 ± 4.365 11.674 ± 1.165 11.739 ± 2.044 12.893 ± 2.097

111.919 ± 30.519 110.049 ± 27.237 432.541 ± 24.484 12.420 ± 5.547 11.883 ± 0.250 30.181 ± 9.809
97.049 ± 1.961 96.051 ± 1.213 417.206 ± 3.636 11.942 ± 0.760 12.748 ± 0.595 35.035 ± 1.308

118.487 ± 28.660 116.327 ± 30.162 453.887 ± 21.167 13.038 ± 6.836 12.505 ± 0.529 25.932 ± 12.534

Depot

35.593 ± 2.338 31.877 ± 2.929 188.556 ± 10.304 5.747 ± 1.517 5.234 ± 1.096 5.006 ± 0.465
86.355 ± 0.810 85.794 ± 1.029 448.649 ± 4.008 13.530 ± 0.761 13.991 ± 0.293 16.285 ± 0.564
84.901 ± 0.976 84.861 ± 1.396 446.248 ± 0.784 13.463 ± 0.633 14.149 ± 0.860 15.288 ± 0.604
85.238 ± 1.170 85.853 ± 0.528 445.714 ± 2.721 13.455 ± 0.702 13.601 ± 0.368 15.479 ± 0.673
86.531 ± 2.873 84.731 ± 1.181 452.672 ± 3.351 13.648 ± 0.668 14.428 ± 1.613 15.723 ± 0.205

Elevator

3.691 ± 0.013 3.629 ± 0.009 17.930 ± 0.052 0.543 ± 0.008 0.607 ± 0.008 0.561 ± 0.001
4.116 ± 0.013 4.070 ± 0.008 19.708 ± 0.018 0.597 ± 0.011 0.676 ± 0.011 0.610 ± 0.001
4.119 ± 0.009 4.085 ± 0.020 19.771 ± 0.072 0.599 ± 0.011 0.674 ± 0.002 0.611 ± 0.002
4.123 ± 0.011 4.066 ± 0.013 19.843 ± 0.065 0.601 ± 0.011 0.673 ± 0.002 0.615 ± 0.003
4.118 ± 0.008 4.068 ± 0.006 19.796 ± 0.063 0.600 ± 0.010 0.672 ± 0.002 0.611 ± 0.001

Logistics

33.062 ± 0.738 32.330 ± 0.337 50.306 ± 0.582 0.886 ± 2.536 0.807 ± 0.017 28.785 ± 0.755
31.936 ± 0.495 30.381 ± 0.158 48.112 ± 0.643 0.684 ± 0.026 0.814 ± 0.016 27.577 ± 0.485
30.457 ± 0.408 30.457 ± 0.209 47.927 ± 0.554 0.676 ± 0.023 0.804 ± 0.009 26.194 ± 0.393
32.795 ± 0.488 32.824 ± 0.552 50.068 ± 0.469 0.684 ± 0.024 0.819 ± 0.018 28.455 ± 0.467
30.439 ± 0.521 30.641 ± 0.414 48.040 ± 0.403 0.683 ± 0.023 0.806 ± 0.015 26.152 ± 0.469

Zenotravel

5.084 ± 0.025 5.025 ± 0.017 23.641 ± 0.070 0.716 ± 0.009 0.791 ± 0.005 0.745 ± 0.005
5.167 ± 0.024 5.142 ± 0.019 24.022 ± 0.157 0.728 ± 0.013 0.807 ± 0.002 0.755 ± 0.003
7.025 ± 0.041 6.953 ± 0.045 31.263 ± 0.160 0.944 ± 0.016 1.044 ± 0.012 1.081 ± 0.004
7.210 ± 0.066 7.164 ± 0.066 31.468 ± 0.126 0.949 ± 0.017 1.063 ± 0.009 1.148 ± 0.010
10.021 ± 0.662 9.986 ± 0.636 40.853 ± 8.818 1.367 ± 0.026 1.496 ± 0.010 1.510 ± 0.015

Table 1: The average and standard deviation time taken by each method compared to each baseline in seconds per instance. The
first three columns respectively present the time taken by our method, a variation of our method that doesn’t enforce ordering,
and a baseline that iterates over possible designs. The final three columns report the average time taken to compute the lower
bound of GSD, lower bound with design, and upper bound.

Conclusion
This paper presents the first attempt at developing a design
framework to help align human expectations about how a
goal specification may be achieved with the actual outcomes
of a robot plan selected to satisfy the specification. Our focus
in this paper has been to provide a clear framework to un-
derstand and study environment design within this context.
As alluded to in the paper, the specific design problem we
study is one among a number of different problems we could
study in this space. In future work, we hope to explore some
of these works and also look at studying these problems in
the context of more complex decision-making frameworks.
In particular, we would be interested in seeing how to adapt
these mechanisms to support more complex objective/pref-
erence specification mechanisms including various forms of
temporal logic and reward functions.
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